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Maternal brain adaptations have been found across pregnancy
and postpartum, but little is known about the long-term effects
of parity on the maternal brain. Using neuroimaging and machine
learning, we investigated structural brain characteristics in 12,021
middle-aged women from the UK Biobank, demonstrating that
parous women showed less evidence of brain aging compared
to their nulliparous peers. The relationship between childbirths
and a “younger-looking” brain could not be explained by common
genetic variation or relevant confounders. Although prospective
longitudinal studies are needed, the results suggest that parity
may involve neural changes that could influence women’s brain
aging later in life.

pregnancy and childbirth | brain imaging | genetics | machine learning

During pregnancy and postpartum, fundamental biological
processes are instigated to support maternal adaptation

and ensure protection of the offspring (1). In rodents, brain
adaptations across pregnancy and postpartum include reduced
neurogenesis in the dentate gyrus (2, 3) and changes in volume,
dendritic morphology, and cell proliferation in the hippocam-
pus (1, 4). In humans, reduction in total brain volume has been
observed during pregnancy, with reversion occurring within 6 mo
of parturition (5). In the postpartum period, regional gray mat-
ter increases have been found in the amygdala, hypothalamus,
and prefrontal cortex (6). Postpartum regional reductions have
also been reported (7–9), some of which are positively related
to maternal attachment (8). While some maternal brain changes
revert during the postpartum period, others extend well beyond
this phase (1, 7, 8, 10) and may influence the course of neurobio-
logical aging later in life. Regional reductions in brain volume
have been found to endure for at least 2 y postpregnancy in
humans (8), and reproductive history has been linked to cortical
thickness later in life (10). Parous rats have increased hippocam-
pal neurogenesis in middle age (3) and show fewer signs of brain
aging relative to nulliparous rats (1, 11). Such long-lasting brain
adaptations could also reflect genetic pleiotropy. Reproduc-
tive behaviors are complex, heritable traits, and their polygenic
architecture is likely to overlap with other traits that influence
brain-aging trajectories (12, 13). Parsing the effects of common
genetic variation is thus important to delineate potential effects
of parity on the brain.

We investigated structural brain characteristics in 12,021
women from the UK Biobank, hypothesizing that parity would
be associated with apparent brain aging. Machine learning and
brain age prediction was used to test 1) whether a classifier could
identify women as parous or nulliparous based on morphomet-
ric brain characteristics and 2) whether brain age gap (estimated
brain age minus chronological age) differed between parous
(n = 9,568) and nulliparous (n = 2,453) women. Mean age ±
SD was 54.72 ± 7.29 y for the full sample and 55.23 ± 7.22 y for
parous and 52.79 ± 7.23 y for nulliparous women. To investigate
the impact of number of childbirths, we tested for associations

between number of births and the probabilistic scores from the
group classification and brain age gap, in addition to comparing
women who had given 1 birth, 2 births, 3 births, 4 births, and 5 to
8 births to nulliparous women.

To parse the effects of common genetic variation, we per-
formed a genome-wide association study (GWAS) on the phe-
notype number of births in 271,312 healthy women in the UK
Biobank (excluding our MRI subsample). We then computed
polygenic score for each European individual in our MRI sub-
sample (n = 10,289; Materials and Methods) and tested for
associations between polygenic scores and 1) the probability
score from the group classification and 2) brain age gap. Next, the
main analyses were rerun using polygenic scores as a covariate.

Results
Fig. 1 and Tables 1 and 2 show the results from the group clas-
sification and the brain age prediction. For the classification, the
average area under the receiver operating characteristic curve
(AUC) was 0.54 (SD = 0.02), p=6.00× 10−4 (Materials and
Methods). The probability of being classified as parous was higher
for the parous group than for the nulliparous group (mean differ-
ence ± SD =− 0.005± 0.04, t =6.61, p=4.07× 10−6, Cohen’s
d =0.13). Within the parous group, the classifier probability
score was not related to number of births (r =−0.02, p=0.45,
CI = [−0.05, 0.02]).

In the brain age analysis, the correlation between predicted
and chronological age was r =0.61, p=< 0.0001, CI = [0.6,
0.62], and root-mean-square error (rmse) = 5.78 (SD = 0.10),
p=< 0.0001. To account for age-related bias in the predicted
age (14, 15), we employed a quadratic regression to the data
(Eq. 1, Materials and Methods). Bias-corrected brain age gap

Significance

Pregnancy is one of the most dynamic periods in a woman’s
life, involving a remarkable potential for brain plasticity that
promotes cognitive and emotional adjustments to the new-
born. We provide evidence for a relationship between number
of childbirths and brain aging in 12,021 middle-aged women,
suggesting that potential parity-related brain changes may
endure beyond the postpartum period and influence the
course of neurobiological aging.

Author contributions: A.-M.G.d.L., T.K., D.v.d.M., T.M., G.D., O.A.A., and L.T.W. designed
research; A.-M.G.d.L., T.K., D.v.d.M., L.M., D.A., and L.T.W. performed research;
A.-M.G.d.L., D.v.d.M., and L.M. analyzed data; and A.-M.G.d.L. and L.T.W. wrote the
paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: a.m.g.d.lange@psykologi.uio.no.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1910666116/-/DCSupplemental.y

First published October 15, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1910666116 PNAS | October 29, 2019 | vol. 116 | no. 44 | 22341–22346

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:a.m.g.d.lange@psykologi.uio.no
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910666116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910666116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1910666116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1910666116&domain=pdf


www.manaraa.com

0.49 0.4

10 5 0 5 10

0.49
0.57

0.51
0.56 0.55 0.57 0.64

0.5
0.4

0.5

0.0

0.5

4 2 0 2 4

0.59 0.27

30 40 50 60

0.59

0.69 0.59
0.63 0.65 0.6

0.37 0.36
0.27

1.0

0.5

0.0

0.5

1.0

45.0 47.5 50.0 52.5 55.0

A A

BB

CC

Fig. 1. (Left, A) The distributions of classifier probability scores in nulliparous and parous women. The x axis refers to the estimated percentage probability
of having given birth. The black vertical lines mark the deciles of the distributions. The matching deciles in the 2 groups are joined by colored lines, showing
a uniform, positive shift in the group of parous women. (Left, B) The portion of the x axis in A marked by the gray shaded area at the bottom of the plot. The
y axis shows the group differences between deciles (parous group minus nulliparous group), while the x axis shows the deciles of the parous group. (Left, C)
Left plot shows the mean ± SD AUC for the classifier was 0.54 ± 0.02, based on a 10-fold cross-validation (red vertical line). The null distribution calculated
from 10,000 permutations is shown in gray, with a mean ± SD AUC of 0.50 ± 0.01. The number of permuted results from the null distribution exceeding
the mean from the cross-validation was 6 (p= 6.00× 10−4). Right plot shows mean classifier probability for each of the subgroups of women based on
number of childbirths. The red vertical line shows the mean classifier probability in the groups of parous women, while the lighter gray area illustrates the
SD. The plot is displayed with balanced group samples (n nulliparous women = 2,453, 1 birth = 442, 2 births = 1,331, 3 births = 523, 4 births = 122, 5 to 6
births = 35; see Materials and Methods for details). The error bars represent the SE on the means. The dashed line indicates 0.5 on the x axis. (Right, A)
The distributions of bias-corrected, estimated brain age gap in nulliparous and parous women. Negative values indicate a predicted brain age that is lower
than chronological age, i.e., a “younger-looking” brain. The plot shows a uniform, negative shift in the group of parous women. (Right, B) The y axis shows
the group differences between deciles (parous group minus nulliparous group), while the x axis shows the deciles of the parous group. (Right, C) Left plot
shows the mean ± SD R2 for the XGboost regressor model was 0.37± 0.02, based on a 10-fold cross-validation with 10 repetitions per fold (red vertical
line). The null distribution calculated from 10,000 permutations is shown in gray, with a mean± SD R2 of−0.01± 0.002 (p = 1.00× 10−4). Right plot shows
the difference in brain age gap between each of the subgroups and nulliparous women as measured by Cohen’s d. The error bars represent the SD of the
effect size. Higher values on the x axis indicate a larger effect size. The dashed line indicates 0 on the x axis. Number of subjects in each group: 1 birth =
1,630, 2 births = 5,315, 3 births = 2,021, 4 births = 476, 5 to 8 births = 126, nulliparous women = 2,453.

correlated negatively with number of births (r =−0.07, p=
5.00× 10−16, CI = [−0.09, −0.06]), indicating a younger-looking
brain in multiparous women. The correlation remained signifi-
cant when including only parous women (r =−0.03, p=3.14×
10−3, CI = [−0.05, −0.01]). To assess the robustness of these
effects, the brain age analysis was rerun using predicted brain
age estimates based on an independent approach and training set
(16, 17). In brief, the results were consistent with the main find-
ings (see Materials and Methods for full description). The results
are provided in SI Appendix, page 2. As a follow-up, first- and
second-degree polynomial fits were performed. The results are
shown in SI Appendix, page 3.

To investigate relevant confound variables, we performed
additional analyses testing the associations between brain age
gap and number of childbirths when accounting for age at
first birth, ethnic background, education, and BMI. None of
these variables fully explained the differences in brain age
gap between parous and nulliparous women. The results are
provided in SI Appendix, Tables S2–S5. To test for additional
confound variables, partial correlation analyses were performed
with 1) age at menarche and age at menopause and 2) number of
incomplete pregnancies as covariates. The correlation between
number of births and brain age gap persisted when including age
at menarche and age at menopause (r =−0.04, p=9.65× 10−4,
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Table 1. Results from the group classification and brain age prediction, including correlation
analyses and logistic regression

Pearson’s r Logistic regression

r p 95% CI β SE z p

Classifier probability score
and no. of childbirths −0.02* 0.45* −0.05, 0.02* 2.19 0.73 3.01 2.61× 10−3

Brain age gap and no.
of childbirths −0.07 5.00× 10−16 −0.09, −0.06 −0.06 0.01 −8.22 2.07× 10−16

SE, standard error. Number of women with >1 birth = 9,568, nulliparous women = 2,453.
*within parous group

CI = [−0.07, −0.02], n = 6007) and when including number
of incomplete pregnancies (r =−0.07, p=6.10× 10−5,
CI = [−0.1, −0.03], n = 3,760). To test whether parity-related
complications or disease influenced the results, we excluded
women with reported diagnoses in ICD10 (18, 19) chap. XV,
“Pregnancy, childbirth, and the puerperium” and reran the
analysis. For the remaining sample (n = 9,064), the relationship
between brain age gap and number of births was r =−0.06,
p=1.72× 10−7, CI = [−0.08, −0.03]. Next, we excluded
women with reported diagnoses in ICD10 chap. V, “Mental and
behavioral disorders” and/or chap. VI, “Diseases of the nervous
system.” For the remaining sample (n = 9,207), the relationship
between brain age gap and number of births remained signif-
icant (r =−0.06, p=4.52× 10−8, CI = [−0.08, −0.04]). See
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202 for an
overview of the ICD10 categories.

The mean polygenic scores for number of births in each of
the subgroups are shown in Fig. 2. Within the group of parous
women, a positive correlation was found between polygenic
scores and number of births (r =0.05, p=1.20× 10−5, CI =
[0.03, 0.07]). Polygenic scores and classifier probability scores
showed a correlation of r =0.04 (p=0.07, CI = [−0.0, 0.08])
for parous women and r =0.00 (p=0.99, CI = [−0.04, 0.04]) for
nulliparous women (full sample: r =0.03, p=0.07, CI = [−0.0,
0.06]). Polygenic scores and brain age gap showed a correlation
of r =0.02 (p=0.06, CI = [−0.0, 0.04]) for parous women and
r =0.04 (p=0.10, CI = [−0.01, 0.08]) for nulliparous women
(full sample: r =0.03, p=0.07, CI = [−0.0, 0.06]). The correla-
tion between number of births and brain age gap persisted when
partialling out polygenic scores (r =−0.08, p=2.32× 10−15,
CI = [−0.1, −0.06] for the full sample and r =−0.03, p=2.62×
10−3, CI = [−0.05, −0.01] within the group of parous women).

Discussion
Summarized, the results show that parity can be linked to
women’s brain age in midlife, in line with a recent analysis that
tested for associations between brain age and a range of phe-
notypes in the UK Biobank (14). We found no evidence that
common polygenetic variation or confound variables could fully
explain the differences in brain age gap between parous and
nulliparous women. Although prospective longitudinal studies
are needed to conclude, the findings suggest that parity may
involve long-lasting neural changes (8, 20–24) that could influ-
ence brain aging later in life (10, 25) and that such effects
may be more prominent following multiple childbirths. While
the present results demonstrated a negative linear relationship
between parity and brain age gap, follow-up analyses also showed
evidence for a moderate quadratic effect (SI Appendix, Fig. S2),
suggesting that any protective effects of parity may level off
and be less pronounced in grand-parous (>5 births) women.
In line with this observation, parity has been linked to risk of
Alzheimer’s disease (AD) (26, 27), with a higher risk in women
with 5 or more completed pregnancies (28). Recent studies have
also shown a J-shaped relationship between parity and mortal-

ity, with longevity peaking at 3 to 4 births (29). Nulliparity has
been associated with increased risk of autoimmune conditions
(30), while grand multiparity has been linked to cardiovascu-
lar diseases including stroke and associated risk factors such
as adiposity and diabetes (26, 28). Although it is possible that
moderate-level parity could be more beneficial for brain aging
relative to nulliparity and grand multiparity, such effects could
also be driven by other variables not considered, for example
differences in socioeconomic factors or stress levels (29). More
studies controlling for relevant confounding factors are needed
to fully understand the nature of the relationship between parity
and brain aging.

Endocrinological modulations play an important role in the
altered brain plasticity that occurs during and after pregnancy
(22, 24). Changes in sex steroid hormones are known to influ-
ence human brain structure through regulation of neuronal
morphology (31), and hormones such as estradiol, progesterone,
prolactin, oxytocin, and cortisol are known to regulate brain plas-
ticity (22, 31). Hormonal profiles are thus likely to contribute to
maternal brain adaptations during pregnancy and postpartum,
and their fluctuations may have implications for brain aging later
in life. However, the long-term effects are not fully understood,
and while endogenous exposure to estrogen has been suggested
to be neuroprotective (32), a recent metaanalysis found no evi-
dence of an association between endogenous estrogen exposure
and incident dementia (33). Another proposed mechanism for
enduring effects is the long-lasting presence of fetal cells in the
maternal body (34–36), and such fetal microchimerism provides
an avenue for biological interactions between fetal and mater-
nal cells long after delivery. In an evolutionary framework, this
has been conceptualized as a mother–offspring negotiation (35),
providing an intriguing link to the maternal immune system.
There is strong evidence for a crucial role of immune factors
in pregnancy (37), which represents a state of low-level inflam-
mation characterized by a balance between anti-inflammatory
and proinflammatory cytokines (1, 38). Pregnancy is known to
influence and modify inflammatory disease activity and symp-
tomology in conditions such as multiple sclerosis, asthma, and
rheumatoid arthritis (39), and the pregnancy-induced increase
in concentration of regulatory T cells may have implications for

Table 2. Differences in brain age gap between nulliparous
women and the subgroups of parous women

Group differences in brain age gap

Group Mean diff (SD) t p Cohen’s d

>1 birth 0.56 (3.76) 8.27 1.54× 10−16 0.15
1 birth (n = 1,630) 0.43 (2.98) 4.49 7.50× 10−6 0.14
2 births (n = 5,315) 0.52 (2.98) 7.14 1.03× 10−12 0.17
3 births (n = 2,021) 0.75 (2.99) 8.33 1.04× 10−16 0.25
4 births (n = 476) 0.58 (2.98) 3.88 1.07× 10−4 0.19
5 to 8 births (n = 126) 0.82 (2.96) 3.02 2.53× 10−3 0.28

Number of women with >1 birth = 9,568, nulliparous women = 2,453.
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Fig. 2. The black circles show the mean polygenic score in each of the sub-
groups based on number of births. The error bars represent the SE on the
means.

inflammatory susceptibility later in life. A higher cumulative time
spent pregnant in the first trimester, which is when the prolifer-
ation of regulatory T cells is highest, has been shown to protect
against AD (39), of which the pathogenesis is known to involve
inflammatory processes (40). Genetic differences have also been
shown to interact with age and parity to influence cognitive func-
tion, expression of proteins related to synaptic plasticity, and
AD neuropathology in mice (41) and humans (42), indicating
differential genotype-dependent effects of parity on the brain
across life. In humans, the polygenetic architecture of reproduc-
tive behavior is known to overlap with other complex traits that
affect brain-aging trajectories, such as biological fecundity and
education (12, 13). Parity is also associated with societal factors
such as economy, culture, and availability of contraception and
childcare, emphasizing that complex social–environmental inter-
actions represent potentially important confounders in genome-
wide association studies (43). It should also be noted that the
presented results may not apply to populations beyond those
represented in the UK biobank. The use of large datasets does,
however, enable the identification of subtle effects that could go
undetected in smaller samples. Although parity may explain only
a small portion of the variance in brain aging, the current find-
ings represent an important part of the wider picture of women’s
brain aging, as well as sex differences in risk factors and disease
(9, 30).

In conclusion, our results provide evidence that parity is linked
to women’s brain aging in midlife and that this association can-
not be fully explained by common genetic variation or relevant
confounding variables. Potential parity-related neural changes

may thus extend beyond the postpartum period and influence the
course of women’s brain aging later in life.

Materials and Methods
The sample was drawn from the UK Biobank (http://www.ukbiobank.ac.uk)
and included 12,021 women. The data are available for researchers through
the UK Biobank application procedure (http://www.ukbiobank.ac.uk/
researchers). Code can be provided upon request. Sample demographics are
provided in Table 3 and SI Appendix, Table S1. Due to the low number of
grand-multiparous women (n for 5 births = 85, 6 births = 31, 7 births = 6,
and 8 births = 4), these subgroups were merged.

MRI Processing. Raw T1-weighted MRI data for all participants were pro-
cessed using a harmonized analysis pipeline, including automated surface-
based morphometry and subcortical segmentation as implemented in
FreeSurfer 5.3 (44). In line with a recent large-scale implementation (45), we
utilized a fine-grained cortical parcellation scheme (46) to extract cortical
thickness, area, and volume for 180 regions of interest per hemisphere, in
addition to the classic set of subcortical and cortical summary statistics from
FreeSurfer (44). This yielded a total set of 1,118 structural brain imaging
features (360/360/360/38 for cortical thickness/area/volume, as well as cere-
bellar/subcortical and cortical summary statistics, respectively). To remove
outliers, the Euler numbers (47) were extracted from FreeSurfer and aver-
aged across the left and right hemispheres. The average values were then
residualized with respect to age and scanning site using linear models,
before subjects with average Euler numbers of SD ± 4 were identified and
excluded (n = 109). In addition, subjects with SD ± 4 on the global MRI
measures mean cortical or subcortical gray matter volume were excluded
(n = 10 and n = 12, respectively), yielding a total of 12,021 subjects for the
main analyses. As a data quality cross-check, the main analyses (binary clas-
sification and brain age prediction) were rerun using MRI data that were
first residualized with respect to the average Euler numbers in addition
to the other covariates. In brief, the results were consistent with the main
findings (see SI Appendix, Table S2 for full results). For the binary classifica-
tion, we residualized all variables with respect to age, scanning site, ethnic
background, education, and intracranial volume (ICV) using linear models.
For the brain age prediction, we residualized all variables with respect to
scanning site, ethnic background, education, and ICV using linear models.

Principal Component Analysis. Principal component analyses (PCA) were run
with z-transformed MRI variables z = (x−µ)/σ, where x is an MRI variable
of mean µ and SD σ). The top 100 components were used in the subsequent
analyses, explaining 56.77% of the total variance for the classifier variables
and 56.78% for the brain age prediction variables, as shown in Fig. 3. As
a cross-check, the correlations between number of births and 1) classifier
prediction value and 2) brain age gap were rerun with 200 components,
explaining 71.62% and 70.98% of the total variance, respectively. With 200
components included, the correlation between number of births and classi-
fier prediction value was r =−0.02, p = 0.43, CI = [−0.06, 0.02], while the
correlation between number of births and brain age gap showed r =−0.07,
p = 2.65× 10−14, CI = [−0.09, −0.05]. As the results were consistent, 100
components were chosen to reduce computational time.

Binary Classification. Gradient boosting classification was performed using
Scikit-learn (https://scikit-learn.org). Parameters were set to max depth = 1,
number of estimators = 100, and learning rate = 0.1 (defaults). To account
for differences in group size between nulliparous and parous women,

Table 3. Demographics for each group

Births N Age (M ± SD) Ethnic background, % Educational qualification, %

0 2,453 52.73 (7.21) W97.02 | B0.78 |M0.73 | A0.65 | C0.37 | O0.37 U51.90 | A13.58 | O20.42 | C3.67 | N2.41 | P4.81 | Noa3.22
>1 9,568 55.23 (7.22) W97.55 | B0.52 |M0.46 | A0.68 | C0.36 | O0.40 U40.52 | A14.14 | O23.06 | C4.54 | N3.58 | P6.26 | Noa7.90
1 1,630 53.82 (7.19) W96.87 | B0.67 |M0.74 | A0.68 | C0.55 | O0.43 U40.67 | A14.60 | O23.74 | C4.72 | N4.48 | P5.40 | Noa6.38
2 5,315 55.23 (7.13) W97.89 | B0.49 |M0.38 | A0.56 | C0.38 | O0.26 U40.67 | A14.60 | O23.44 | C4.72 | N5.40 | P7.17 | Noa8.03
3 2,021 55.94 (7.26) W97.33 | B0.54 |M0.49 | A0.74 | C0.25 | O0.64 U40.72 | A14.30 | O22.61 | C3.66 | N3.66 | P6.73 | Noa8.31
4 476 56.80 (7.45) W97.06 | B0.42 |M0.42 | A1.68 | C0.00 | O0.42 U39.28 | A11.97 | O21.43 | C4.41 | N4.41 | P9.03 | Noa9.45
5 to 8 126 56.33 (6.96) W97.62 | B0.00 |M0.00 | A0.79 | C0.00 | O1.59 U38.89 | A12.70 | O22.22 | C2.38 | N3.97 | P10.32 | Noa9.52

M ± SD, mean ± SD. Ethnic background: A, Asian; B, black; C, Chinese; M, mixed; O, other; W, white. Educational qualification: A, A lev-
els or equivalent; C, CSE or equivalent; N, NVQ/HNS/HNS or equivalent; Noa, none of the above; O, O levels/GCSE or equivalent; P, professional
qualification, e.g., nursing/teaching; U, university/college degree. For the categories, see http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=100305 and
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001.
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Fig. 3. (A) Cumulative explained variance for the PCA components based on 1,118 z-transformed MRI variables used in the brain age analysis. (B) Explained
variance ratio shown for the top 10 PCA components used in the brain age analysis.

undersampling was performed using Imbalanced-learn (https://imbalanced-
learn.readthedocs.io/en/stable/user guide.html), randomly selecting sam-
ples (without replacement). The balanced sample included 2,453 nulliparous
women and 2,453 parous women with a maximum of 6 births (n 1 birth =
442, 2 births = 1,331, 3 births = 523, 4 births = 122, 5 to 6 births = 35). The
classifier probability score was estimated based on a 10-fold cross-validation,
assigning a probability of being labeled as parous (having given birth) to
each of the subjects.

Brain Age Prediction. Brain age prediction estimates an individual’s appar-
ent brain aging based on structural brain characteristics derived from MRI.
Subtracting chronological age from estimated brain age provides a mea-
sure of individuals’ brain age gap: the difference between their estimated
brain age and their chronological age. For instance, if a 60-y-old individual
shows a brain age gap of −5 y, the typical aging pattern resembles the brain
structure of a 55-y-old individual; i.e., the brain is younger looking than
what is expected for the chronological age (48). The XGBRegressor model
from XGBoost (https://xgboost.readthedocs.io/en/latest/python/index.html)
was used to run the brain age prediction analysis with an algorithm that
has been used in recent large-scale brain age studies (14, 45). Parameters
were set to max depth = 3, number of estimators = 100, and learning
rate = 0.1 (defaults). The predicted age based on the PCA components
was estimated in a 10-fold cross-validation with 10 repetitions per fold,
assigning an estimated brain age to each individual. Brain age gap was cal-
culated using estimated brain age minus true age. Average rmse ± SD =
5.78 ±0.10 based on a 10-fold cross-validation with 10 repetitions per fold.

The null distribution calculated from 10,000 permutations showed an aver-
age rmse of 7.33 ± 0.01, and the number of permuted results from the
null distribution that exceeded the mean from the cross-validation was 0
(p = 1.00× 10−4).

To adjust for a frequently observed bias leading to generally overesti-
mated age predictions at low age and underestimated predictions at high
age (14, 15), we employed the regression

Predicted age = A + B× True Age + C× True Age2, [1]

where the coefficients A, B, and C parameterize the relationship between
the true and predicted age. These coefficients were then used to remove the
effect of the bias, to achieve a linear dependence with slope = 1 between
the true and predicted age values, as illustrated in Fig. 4.

To ensure that the bias correction was employed successfully, we tested
the association between bias-corrected brain age delta and number of births
while controlling for chronological age. The test showed results consistent
with the main findings: r =−0.08, p = 2.03× 10−16, CI = [−0.09, −0.06].

To assess the robustness of the effects, the brain age analysis was rerun
using predicted brain age estimates based on an independent approach
and training set from the brainageR software (https://github.com/james-
cole/brainageR) (16, 17). The brainageR model is trained on voxel-based
morphometry maps (VBM) based on T1-weighted MRI scans from 2,001
healthy individuals (male/female = 1,016/985, mean age ± SD = 36.95 ±
18.12, age range 18 to 90 y) and uses a Gaussian Processes regression with

A B

Fig. 4. (A) Machine performance is biased toward the mean age, resulting in overestimated predictions at low age and underestimated predictions at high
age. (B) After bias correction using Eq. 1, the predictions follow the expected dependence.
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the kernlab package in R. See ref. 16 for details. The results are shown in SI
Appendix, Fig. S1.

The differences between the quantiles of the groups of parous and nul-
liparous women were investigated using the shift function in the Robust
Graphical Methods for Group Comparisons package in R (49) (https://github.
com/GRousselet/rogme). In brief, the shift function shows the difference
between the quantiles of 2 groups as a function of the quantiles of 1 group.

GWAS. A GWAS was run on the women in the UK Biobank cohort
(n = 271,312, excluding the MRI subsample), using PLINK 2.0 (50) and the
UKB v3 imputed genetic data, filtering out SNPs with a minor allele fre-
quency below 0.001 or failing the Hardy–Weinberg equilibrium test at
p< 1.00× 10−9. Nonwhite Europeans and individuals with a brain disor-
der as indicated by ICD10 were excluded from the study. We then ran a
linear regression on the continuous measure number of childbirths, covary-
ing for age and the first 10 genetic principal components, as provided by UK

Biobank under field 22009. PRSice v1.25 (51) was used to calculate polygenic
scores for number of births across p-value thresholds from 0.001 to 0.5, with
intervals of 0.001, using PRSice default settings. This includes the removal of
the major histocompatibility complex (MHC) (chromosome 6, 26 to 33 Mb)
and thinning of SNPs based on linkage disequilibrium and p value. A PCA
was run on the polygenic scores across all p-value levels (52), and the first
component explaining 92.24% of the total variance was used in the sub-
sequent analyses. The PCA component correlated r = 0.9 with the PGS at
threshold p = 0.05.
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